Архив категорий Статьи

Что построить?

Классический деревянный дом или дом из арболита?

Дерево в России всегда оставалось самым популярным строительным материалом для личного коттеджно-дачного строительства: хорошая теплопроводность, привлекательный внешний вид, сравнительно невысокая стоимость и высочайшая экологичность долгое время делали этот материал действительно наилучшим выбором. Но и серьёзных недостатков у деревянных домов немало, что вкупе с неуклонным ростом стоимости и падением качества деревянного домостроения даёт повод для поиска лучших аналогов. Интернет магазин ETORG в свою очеридь предлагает большой выбор товаров, по низким ценам. Но, лучшим заменителем дерева, как ни странно, является само дерево. Арболит – так называемый деревобетон, материал, на 80-90% состоящий из древесной щепы, позволяет не только получить все преимущества деревянного дома, но и обладает рядом существенных плюсов. Сравним особенности практического применения этих материалов в современных условиях. В строительстве загородных деревянных домов наиболее используемыми разновидностями стеновых материалов сейчас являются обычный брус, оцилиндрованное бревно и клееный брус (в порядке возрастания стоимости). К сожалению, производимые размеры этих материалов практически никогда не превышают 30 сантиметров в диаметре или толщине, ранее же брёвна менее 50см вообще не применялись в строительстве домов из-за слишком больших теплопотерь. Теперь же оцилиндрованные бревна обычно используются 18-24см, выше идёт уже серьёзный рост стоимости. Дома из бруса находятся в аналогичной ситуации. А наиболее престижный материал – клееный брус так вообще редко выпускается толще 21см из-за особенностей производства, да и тот, если качественный – стоит не менее 700 евро за 1м3 (но и цена — не гарантия экологичности используемого клея). Отсюда мы приходим к достаточно важной проблеме современных деревянных домов – на данный момент они просто принципиально не могут использоваться без специальных утеплителей. Следовательно, мало того что точно придётся забыть о желаниях иметь настоящую бревенчатую или брусовую поверхность внутри дачного дома и произвести дополнительные (иногда весьма немалые) затраты на утеплители, но и вспомнить о том, что с ними – вы в большинстве случаев получаете постоянное фенольное или стирольное загрязнение атмосферы в доме. Теплопроводность дерева составляет 0.15-0.4 Вт/(мК), арболита – 0.07-0.17 Вт/(мК). Толщина стандартного блока из арболита – 30см, следовательно, стены из таких блоков по теплосбережению вполне соответствуют классическим стенам из полуметровых бревён и даже превосходят их. И это следует не только из сухих расчетов, но и из практики применения – даже на севере России дома из арболита со стенами такой толщины комфортно эксплуатируются без дополнительного утепления. Вернёмся к дереву, к наиболее важной из его особенностей – дышащим свойствам деревянных стен. Именно они создают тот уникальный микроклимат деревянных домов из бруса или брёвен, регулируя уровень влажности и обеспечивая пассивную вентиляцию огромной мощности – до 35% внутреннего воздуха в помещении может обновляться через поры стен каждые сутки. Но снова вспомним об утеплении. Безусловно, и сам утеплитель, и соответствующий облицовочный материал можно подобрать также с дышащими свойствами, но… Дышащие стены – это вентиляция. А вентиляция – это наиболее эффективный способ распространения всех ядов. Поэтому, при использовании минваты, пенопласта, многих других видов утеплителей, а также при покрытии стен различными видами красок – просто необходимо использовать плотные пароизолирующие пленки и полностью блокировать «дыхание» стен, чтобы не способствовать и без того немалому распространению отравляющих веществ в помещении. Стены из арболита, как почти полностью состоящие из дерева, также обладают соответствующими дышащими свойствами, но поскольку не требуют утепления – позволяют использовать простые вентилируемые облицовочные материалы и сохранить в полной мере эту немаловажную особенность, обеспечивающую постоянное поступление чистого, отфильтрованного воздуха через всю поверхность стен. Далее, главное, в чём дерево всегда проигрывало всем видам кирпича и бетона – высокая горючесть. Различные составы (которые следует учитывать и в расчете стоимости деревянного дома), конечно, снижают степень воспламеняемости, но, во-первых, достаточно слабо, а, во-вторых, со временем уровень защиты падает. К тому же, в данном свете наибольшую проблему опять представляют легковоспламеняемые и высокотоксичные утеплители. Арболит является материалом полностью не поддерживающим горение, и способен действительно долгое время противостоять высоким температурам без каких-либо дополнительных обработок. Также, большую проблему всегда представляла плохая биологическая устойчивость древесины – гниение, заражение различными грибками и вредителями, просто потеря внешнего вида из-за атмосферных факторов, появление микротрещин и т.д.… И такая проблема именно в современных загородных домах становится ещё более актуальной – при оцилиндровке брёвен оголяются самые мягкие слои древесины, которые значительно сильнее подвержены всем этим факторам. Всё это в какой-то степени решаемо специальными средствами. Но, в любом случае, дерево обязательно требует постоянного ухода и периодических обработок каждые несколько лет. При этом, если упустить момент хоть раз, то уже всёравно останется единственная возможность – облицовывать стены. А, следовательно, и огромные переплаты за внешний вид чисто деревянного дома уходят в никуда. В стеновых блоках из арболита, мало того что древесная щепа механическим образом ограждается от внешних воздействий мощной цементной защитой, так и полностью обработана для дополнительной сохранности (что невозможно произвести для больших массивов дерева) и обладает абсолютной биостойкостью. В самом процессе строительства дерево имеет ещё ряд неприятных особенностей. Высокая усадка всех видов древесины не позволяет быстро построить деревянный дом – обязательно требуется потратить минимум год на усадку здания (до 10%) и только после этого можно начинать отделку. К тому же, при этом дерево нередко сильно растрескивается, что не только влияет на внешний вид, но, опять же, ухудшает параметры биостойкости и теплоизоляции здания. Строительство домов из бревён ещё и требует затрат на весьма недешевую и непростую операции по конопатке щелей, требующую хороших материалов и профессиональных исполнителей, так как некачественная работа здесь (а проводится она дважды – до и после усадки строения) наносит сильнейший удар по теплосберегающим качествам дома. Арболит имеет усадку всего 0.4%, поэтому возможно оперативное возведение здания из стеновых блоков в один заход, то есть полное строительство типового садового дома можно завершить, при желании, всего за месяц. И очень весомое качество арболита – чрезвычайно низкая сложность строительства, как и по требованиям к трудозатратам, так и, главное – к профессиональности. Дерево – очень капризный материал и требует грамотного подхода специалистов. Даже громкое имя строительной компании – не залог качества, и узнать кто и как на самом деле строит ваш дом – практически невозможно, если вы сами не строитель. На полноценную же проверку результата – уйдут годы. А качественно выстроить стены из арболита может любой, кто знаком с простой кирпичной кладкой! И займёт это значительно меньше времени. В итоге, современное деревянное домостроение на практике оказывается абсолютно неэффективным. В результате длительного, сложного и очень дорогостоящего строительства – возможно получить красивый бревенчатый или брусовый дом (и то только с внешней стороны), набитый утеплителем с сомнительной экологичностью, загерметизированный со всех сторон, требующий постоянной заботы, чтобы сохранять хоть в каких-то разумных параметры огнестойкости и биостойкости. А через некоторое время, даже при качественной постройке и уходе, — всёравно потребующий обшивки вагонкой, блок-хаусом, сайдингом или другими облицовочными материалами. И есть ли смысл во всём этом процессе, если за значительно более низкую цену и в в кратчайшие сроки можно получить дом с изначально теплыми, негорючими и экологичными стенами из арболита?

Теплоизоляционные материалы для кровли

В решении проблем энергосбережения, а также для повышения комфортности помещений немаловажную роль играет утепление ограждающих конструкций зданий: наружных стен, перекрытий, покрытия и т. д. Применительно к существующим зданиям, проще снизить их энергопотребление за счет утепления покрытия (кровли) при ремонте.

Новые нормы значительно повысили требования к величине термического сопротивления покрытий и перекрытий, в соответствии с которыми, новое строительство, модернизация и капитальный ремонт зданий не могут осуществляться без применения эффективных теплоизоляционных материалов. Применение тепловой изоляции при устройстве мастичных и рулонных кровель для плоских покрытий снаружи здания в какой-то мере позволяет снизить затраты на отопление помещений за счет снижения теплового потока вследствие увеличения термического сопротивления одной из ограждающих конструкций – покрытия. Кроме того, тепловая изоляция для плоских железобетонных покрытий:

– защищает покрытие от воздействия переменных температур наружного воздуха;

– выравнивает температурные колебания основного массива покрытия, благодаря чему исключается появление трещин вследствие неравномерных температурных колебаний;

– сдвигает точку росы во внешний теплоизоляционный слой, что исключает отсыревание бетонного или железобетонного массива покрытия;

– формируется более благоприятный микроклимат в помещении за счет повышения температуры внутренней поверхности покрытия (потолка) и уменьшения перепада температур внутреннего воздуха и поверхности потолка, в том числе и чердачных помещений.

Применение утепления для скатных крыш позволяет превратить чердачное помещение в жилое, что увеличивает полезную площадь жилья. А утепление кровли из металлического профилированного листа предотвращает появление конденсата на его поверхности в холодное время года, что очень важно, например, для складских помещений. Следует отметить, что физико-технические свойства используемых теплоизоляционных материалов оказывают определяющее влияние на теплотехническую эффективность и эксплуатационную надежность конструкций. При выборе утеплителя следует учитывать, что на долговечность и стабильность теплофизических и физико-механических свойств теплоизоляционных материалов, входящих в конструкцию ограждения, оказывают существенное влияние многие эксплуатационные факторы. Это, в первую очередь, знакопеременный (зима–лето) температурно-влажностный режим «работы» конструкции и возможность капиллярного и диффузионного увлажнения теплоизоляционного материала, а также воздействие ветровых, снеговых нагрузок, механические нагрузки от хождения людей, перемещения транспорта и механизмов по поверхности кровли производственных зданий. Поскольку теплоизоляционные материалы, применяемые в строительстве, «работают» в достаточно жестких условиях, к ним предъявляются повышенные требования. Прежде всего, обратите внимание на коэффициент теплопроводности материала. Он должен быть таков, чтобы материал в условиях эксплуатации мог обеспечить требуемое сопротивление теплопередачи в конструкции при минимально возможной толщине теплоизоляционного слоя. Кроме того, теплоизоляционные материалы должны обладать морозостойкостью (не менее 20–25 циклов), чтобы сохранять свои свойства без существенного снижения прочностных и теплоизоляционных характеристик до капитального ремонта здания, а также быть водостойкими, биостойкими, не выделять в процессе эксплуатации токсичных и неприятно пахнущих веществ. Плотность материала, применяемого для утепления, должна быть не более 250 кг/м3, иначе существенно возрастают нагрузки на конструкции, что нужно учитывать при выборе материалов для ремонта ветхих строений.

Теплоизоляционные материалы обладают рядом теплотехнических свойств, знание которых необходимо для правильного выбора материала конструкции и проведения теплотехнических расчетов. Точность последних в значительной степени зависит от правильного выбора значений теплотехнических показателей. Какие же это показатели?

  1. Средняя плотность. Следует отметить, что средняя плотность теплоизоляционных материалов достаточна низка по сравнению с большинством строительных материалов, так как значительный объем занимают поры. Плотность применяемых в настоящее время в строительстве теплоизоляционных материалов лежит в пределах от 17 до 400 кг/м3, в зависимости от их назначения. Известно, что чем меньше средняя плотность сухого материала, тем лучше его теплоизоляционные свойства при температурных условиях, в которых находятся ограждающие конструкции зданий. Чем меньше средняя плотность материала, тем больше его пористость. От характера пористости зависят основные свойства материалов, определяющие их пригодность для применения в строительных конструкциях: теплопроводность, сорбционная влажность, водопоглощение, морозостойкость, прочность. Наилучшими теплоизоляционными свойствами обладают материалы с равномерно распределенными мелкими замкнутыми порами.
  2. Теплопроводность. На величину теплопроводности пористых материалов, каковыми являются теплоизоляционные материалы, оказывают влияние плотность материала, вид, размеры и расположение пор, химический состав и молекулярная структура твердых составных частей, коэффициент излучения поверхностей, ограничивающих поры, вид и давление газа, заполняющего поры. Однако преобладающее влияние на величину теплопроводности материала имеют его температура и влажность.

Теплопроводность материалов возрастает с повышением температуры, однако гораздо большее влияние в условиях эксплуатации оказывает влажность.

  1. Влажность. С повышением влажности теплоизоляционных (и строительных) материалов их теплопроводность резко повышается. Очень важной характеристикой теплоизоляционного материала, от которой зависит теплопроводность, является и сорбционная влажность, представляющая собой равновесную гигроскопическую влажность материала при различной температуре и относительной влажности воздуха.
  2. Водопоглощение. Следует обратить внимание, что водопоглощение теплоизоляционных материалов отечественного производства и инофирм определяется по разным методикам. При выборе материала для конструкции рекомендуется обращать внимание на показатели, приведенные в ТУ, ГОСТ или рекламных проспектах (для материалов инофирм), и сравнивать их с требуемыми по условиям эксплуатации А и Б (приложения 3 СНиП II-3-79* «Строительная теплотехника»). Как правило, теплопроводность теплоизоляционных материалов в условиях А и Б на 15–25% выше, чем указано в стандартах для сухих материалов при температуре 250 С. Значительно снизить водопоглощение минераловатных и стекловолокнистых теплоизоляционных материалов позволяет их гидрофобизация, например, путем введения кремнийорганических добавок. Продукция инофирм, поставляемая на наш рынок, является гидрофобизированной, а отечественная, за небольшим исключением, – негидрофобизированной.
  3. Морозостойкость – способность материала в насыщенном состоянии выдерживать многократное попеременное замораживание и оттаивание без признаков разрушения. От этого показателя существенно зависит долговечность всей конструкции, однако данные по морозостойкости не приводятся в ГОСТ или ТУ.
  4. Механические свойства. К ним относят прочность на сжатие, изгиб, растяжение, сопротивление трещинообразованию. Прочность теплоизоляционных материалов зависит от структуры, прочности его твердой составляющей (остова) и пористости. Жесткий материал с мелкими порами более прочен, чем материал с крупными неравномерными порами. В соответствии со СНиП II-26-99 «Кровли» (проект, действующий СНиП II-26-76) прочность на сжатие для теплоизоляционных материалов, применяемых в качестве основания под рулонные и мастичные кровли, является нормируемым показателем. Прочность теплоизоляционных материалов, которые могут применяться для утепления скатных крыш, не нормируется, поскольку теплоизоляция укладывается в обрешетку и не несет нагрузки от кровли.
  5. Долговечность. На износоустойчивость конструкции покрытия влияют также химическая стойкость теплоизоляционного материала (это, как правило, следует учитывать при выборе материалов для утепления покрытий производственных зданий) и его биологическая стойкость.
  6. Пожаробезопасность. Теплоизоляционный материал для применения в покрытиях выбирается с учетом его горючести, способности к дымообразованию и возможности выделения токсичных газов при горении. Выбор теплоизоляционного материала в зависимости от типа кровельного покрытия определяется с учетом требований СНиП на кровли, пожарную безопасность и др.

Сравнение арболита и газобетона

Данная статья будет мало интересна тем людям, которые проживают в южных регионах Российской Федерации и не предполагают надстройку второго этажа над своим частным домом. Для большинства же других будет полезно узнать, в чем преимущества арболита над газобетоном и почему он с каждым годом завоевывает все большую популярность. Но начнем мы как раз с недостатков арболита, главным из которых является то, что он получается несколько дороже газобетона. Это связано с тем, что его производство имеет несколько меньшую массовость, что, в свою очередь, повышает себестоимость материала. Правда у этого недостатка есть один «скрашивающий» фактор: потери во время эксплуатации, транспортировке и других строительных и околостроительных работах у арболита значительно меньше, что сводит на «нет», преимущества газобетона, а в некоторых случаях даже делает арболитовые блоки даже более выгодными. Теперь перейдем к основным преимуществам арболитовых блоков, над газобетонными. Первым из них идет более высокая теплоизоляция арболита по сравнению с газобетоном. Выигрыш у первого над вторым достигает фантастической величины в семьдесят пять процентов. Если говорить в конкретных величинах, то теплопроводность газобетона составляет 0,21 Вт/мК, а теплопроводность арболита составляет 0.12 Вт/мК. Следующим преимуществом арболитовых блоков над газобетонным является то, что плотность первых, составляет около шестисот пятидесяти килограмм на кубический метр, а плотность второго около восьмисот килограмм на метр кубический. В итоге это дает не маленькую экономию на затратах на фундамент. Также, стоит отметить, что блоки из арболита менее хрупкие и более стойкие к приложению силы на растяжение. А вот у газобетонных блоков эти показатели не просто ниже. Они настолько низки, что считаются главным недостатком этого строительного материала. Плюс к этому, арболит в целом, по характеристикам более пластичный, нежели газобетон. Еще одним важным преимуществом арболита, является то, что при строительстве из блоков, изготовленных на его основе, не требуется производить армирование, что снижает расходы на строительство, ведь металл является далеко не самым дешевым материалом.

В заключении хотелось бы сказать несколько слов, почему вообще стоит сравнивать газобетон и арболит, а также другие бетоны, которые относятся к легким. Во-первых, легкие бетоны стали набирать очень серьезную популярность в качестве строительного материала для возведения загородных домов, что в первую очередь связано с их низкой стоимостью. Во-вторых, они ни в чем не уступают традиционным строительным материалом, в особенности в ключе основных эксплуатационных характеристик. В-третьих, они более экономичны в процессе эксплуатации, так имеют более низкую теплопроводность, а значит, расходы на отопление в холодное время года снизятся. В-четвертых, они имеют низкую плотность, а значит итоговый вес конструкции получится ниже, чем при строительстве из традиционных материалов, а значит и затраты на фундамент будут на много ниже.

Применение перлита в строительстве

Песок перлитовый вспученный на сегодняшний день является одним из самых высокоэффективных утеплителей в мире. Биологически стойкий, инертный, негорючий, легкий, сыпучий материал получают высокотемпературным обжигом водосодержащего вулканического стекла – перлита.

Более полувека вспученный перлитовый песок используется в качестве утеплителя, как в чистом виде, так и в теплоизоляционных изделиях. Уникальные свойства вспученного перлита обусловили широкое применение этого материала в промышленности и строительстве.

Легкий (50–250 кг/м3), негорючий, пористый песок-щебень сегодня используется для тепловой изоляции зданий, сооружений, оборудования. Он работает при температурах от –273 до +900°С. С его помощью решают вопросы огнезащиты, акустической изоляции, его используют в качестве наполнителя в легких бетонах, красках, линолеуме и др.

В нашей стране вспученный перлит незаслуженно мало применяется в штукатурках. Штукатурные растворы, приготовленные из песка перлитового вспученного, наряду с улучшенной декоративной отделкой поверхности стен, увеличивают их теплозащитную способность, повышают комфортабельность внутренних помещений за счет высокой звукопоглощающей способности, увеличивают огнестойкость конструкций. Перлитовые штукатурные смеси применяются для улучшения теплотехнических, звукоизоляционных и акустических свойств ограждающих конструкций (стен, перегородок и перекрытий) жилых, общественных и производственных помещений, их подвалов, выполненных из кирпича, бетонных, железобетонных, керамзитобетонных и других конструкций. Твердение растворов происходит в естественных условиях. Особенно перспективно применение теплых перлитовых штукатурок в сельском и индивидуальном строительстве. Слой такой штукатурки толщиной 3 см по своим теплоизоляционным свойствам равноценен 15 см кирпичной кладки. Штукатурка наносится по кирпичу, бетону, шлакобетону, металлической сетке, дереву и без каких-либо дополнительных работ может быть окрашена либо оклеена обоями. Ею могут быть утеплены как отапливаемые, так и неотапливаемые помещения. В США, например, для этой цели используется не менее 130 тыс. м3 вспученного перлита.

В зарубежном строительстве широко используются легкие строительные растворы на основе вспученного перлита. Смешанные в сухом состоянии с гипсом либо цементом, такие составы затворяются водой непосредственно на строительной площадке и укладываются. Ими заполняются полости в стенах, блоках, кирпиче, производится затирка швов и щелей. Такой состав имеет следующие характеристики: средняя плотность – 650 кг/м3; прочность на разрыв – более 1,7 Н/м2; прочность на сжатие – более 5 Н/м2; теплопроводность – около 0,2 Вт/(м*К). Наиболее интересен такой раствор при строительстве из легковесного кирпича или пенобетона, свойства которых близки по своим теплотехническим параметрам к характеристикам раствора. Кладка на таких растворах не имеет мостиков холода.

Для изоляции стен зданий используется обеспыленный крупный перлитовый песок с размером зерна от 6 мм, объемной насыпной массой 60–100 кг/м3. Засыпку полости между несущей и облицовочной кладками ведут послойно после укладки 3–4 рядов кирпича. Засыпанный слой во избежание усадки в процессе эксплуатации уплотняют постукиванием приблизительно на 10%. На рабочих разрывах изоляции размещают гидроизоляционные прокладки. При необходимости может быть выполнен изоляционный слой любой требуемой толщины. Обладая высокими теплозащитными свойствами (0,04–0,05 Вт/(м*К)), вспученный перлит не стареет и не разрушается вредителями животного и растительного происхождения. Засыпка производится как из мешков, так и посредством специальных пескоструйных машин. Перлитовые засыпки используют для изоляции стен из деревянных и каркасных конструкций. Такие изоляционные слои негорючи, поэтому повышают пожарозащищенность зданий. В мировой практике широко используются перлитовые засыпки в конструкциях теплых наклонных крыш. Сначала на стропила укладываются диффузионно-проницаемые нижние покрывающие плиты (например, гипсокартонные плиты). Перлит насыпается в полость между обшивкой и обрешеткой и уплотняется на 10%. При выполнении нижнего покрывающего слоя из вагонки по ней укладывают водонепроницаемую прокладку из пергамина или пленки. Места подсоединения к водосточному желобу, а также прохода через кровлю герметично изолируются уплотнительной и клейкой лентами. Весьма интересным материалом, используемым при выполнении изоляции наклонных крыш, является битуминизированный перлит. Частицы перлита, предварительно в заводских условиях обработанные битумом, при добавлении в него растворителя становятся клейкими. Это позволяет непосредственно при проведении работ создавать чрезвычайно прочные изоляционные слои любой формы. Такая изоляция хорошо комбинируется с битуминированными покровными слоями и изоляционными плитами, не требует нагрева перед укладкой.

С помощью вспученного перлита выполняют теплозвукоизоляцию полов. Для устройства утепленных монолитных полов с асфальтовым либо другим твердым покрытием используют гидрофобизированный вспученный перлитовый песок с размером частиц до 6 мм и насыпной плотностью около 95 кг/м3. Вспученный перлитовый песок из мешков высыпается на основу и распределяется выравнивающими рейками так, чтобы толщина слоя песка превышала желаемую толщину на 20%. Минимальная толщина укладки составляет 1 см. Трубопроводы и прочие неровности просто утапливаются в слое этого хорошо сыпучего материала. Вся поверхность перекрывается плитами, поверх которых и делается монолитное покрытие. Если такие слои монтируются не на подвальное перекрытие, то прежде всего укладываются дренажные трубки для скопления и удаления влаги. Под слой помещается абсорбирующая защитная прокладка, например, крафт-бумага (но ни в коем случае не пленки). При устройстве полов с деревянным покрытием вспученный перлит укладывается без уплотнения. Любые полости между балками и пиломатериалами заполняются без труда, без потерь утеплителя на различные вырезки. Негорючесть материала повышает пожароустойчивость конструкции пола. В случае необходимости предотвращения пыления и укрепления верхнего перлитового слоя выполняют посыпку слоя цементом с последующим легким смачиванием. Другим способом укрепления слоя теплоизоляции является покрытие перлита диффузионно-открытыми материалами, такими, например, как стеклоткань, гофрированный картон, крафт-бумага, древесно-волокнистые плиты. Для повышения несущей способности насыпного теплоизоляционного слоя, особенно при укладке монолитных полов, частицы вспученного перлита обрабатывают воском. Несмотря на незначительный собственный вес, такой перлит, уплотненный под грузом, образует стабильный, достаточно прочный изоляционный слой для сухих бесшовных полов.

В начале 90-х годов в СССР объем выпуска вспученного перлита составлял 2,0 млн м3, при этом 90% материала производилось в России. Сегодня годовой объем производства вспученного перлита в России не превышает 200 тыс. м3. Анализ зарубежного и отечественного опыта применения вспученного перлита в строительстве показывает, что помимо традиционных сфер применения этого материала, известных как в России, так и за рубежом, появились и интенсивно развиваются новые направления, которые пока мало освоены.

Наибольшее количество вспученного перлита в мировой практике используется в формованных теплоизоляционных изделиях (около 60%). В качестве связующего используют цемент, гипс, битум, жидкое стекло. Такие изделия выпускаются и в России. Среди перспективных российских формованных теплоизоляционных изделий сегодня можно назвать лигноперлит, эпсоперлит, перлитодиатомит, термоперлит.

Эти материалы, не имеющие в своем составе органических соединений, могут быть применены как для изоляции горячих поверхностей (термоперлит – до +600°С, перлитодиатомит – до +800°С), так и в качестве огнезащитной и огнестойкой строительной изоляции. В качестве связующего используют семиводный сульфат магния (эпсоперлит) или гидроксид натрия и его соли (термоперлит).

Малая начальная влажность позволяет выполнять процесс спекания в одну стадию по конвейерной технологии в течение 1,5–2 часов при температуре +500°С (термоперлит).

В настоящее время в России для строительства применяется не более 20% выпускаемого вспученного перлита. Он практически не используется для изоляции стен, кровли, потолков. Между тем, в связи с повышением требований к теплозащите зданий, этот материал очень перспективен. Заводы, выпускающие вспученный перлит, сохранили свой производственный потенциал и могут сегодня поставить строителям любое требуемое количество перлита высокого качества.

Опилкобетон — не арболит?

Арболит и опилкобетон очень часто считают одним и тем же материалом, что неверно. Хоть ГОСТ на арболит и определяет его достаточно широко: «бетон на цементном вяжущем, органических заполнителях и химических добавках», но классический арболит предполагает использование именно древесной щепы, как основы всех его уникальных свойств. Как и арболит, опилкобетон является экологичным стеновым материалом с высокими показателями звуко- и теплоизоляции, огнестойкости относительно многих других стройматериалов, которые отлично подходят для офисов и квартир. Но существует и ряд отличий, обусловленных другой структурой опилкобетонных блоков. В производстве опилкобетона вместо специальной древесной щепы нормированных размеров – применяют просто мелкие древесные опилки, которые не могут обладать достаточными прочностными свойствами сами по себе. В отличие от щепы, они не способны достаточно усилять (армировать) стеновой блок и обеспечивать его высокую «пластичность», то есть опилкобетон лишен и таких важных свойств арболита, как значительный показатель прочности на изгиб (хотя в этом и опилкобетон превосходит многие хрупкие легкие бетоны) и способности к временной деформации без разрушения блока. Для заполнения избыточного количества пустот, уменьшения усадки и упрочнения опилкобетонных блоков – в них добавляют большое количества песка. Кроме того, для экономии вяжущего – может добавляться известь и глина. Использование кремнезема (песка) наносит весомый удар по огнестойкости опилкобетона, так как при температуре свыше 573 °C он меняет свою полиморфную модификацию, приводя к изменению объёма и появлению трещин в опилкоблоках. Различия в составе приводят и к ряду других минусов опилкобетона по сравнению с арболитом. Как следствие невысокого количества древесины в опилкобетонном блоке – теплопроводность опилкобетона плотностью 800 кг/м3 составляет 0.32 Вт/(мК) — вдвое худший показатель, чем уарболита аналогичной плотности. Один из основных недостатков опилкобетонных блоков – требования упрочнения большими объемами вяжущего и песка приводят к тому, что обычная конструкционная марка М25 (для домов до двух этажей) достигается только при плотности стеновых блоков в 950 кг/м3 (высокая плотность увеличивает стоимость как самого материала, так и его транспортировки; удорожает и усложняет проведение строительных работ). У арболита – прочности М25 по ГОСТ’у соответствуют блоки с плотностью всего 500-700 кг/м3. И так как практически для любых материалов рост удельного веса соответствует не только увеличению прочности, но и падению теплосберегающих свойств — теплопроводность применяемых на практике арболитовых и опилкобетонных блоков будет отличаться значительно сильнее, чем в 2 раза. Относительно более низкое содержание в опилкобетоне дерева (количество опилок обычно должно находиться в пределах 50%, в то время как в арболитовых блоках щепы до 80-90%), как пористого заполнителя – негативно сказывается на его свойствах обеспечения пассивной вентиляции помещения (но и то в выполнении этой задачи опилкобетон значительно лучше немалого числа других стеновых материалов, таких как керамзитобетон и подобные).

Следовательно, опилкобетон действительно является хорошим стеновым материалом на фоне многих других, которые он превосходит по ряду важных показателей, но отсутствие специально подготовленного древесного заполнителя и наличие лишних компонентов – вынуждают опилкобетон значительно уступать настоящему арболиту.

Кирпич или арболит?

Кирпич — строительный материал, известный  издревле. В популярности с ним соперничает только дерево. Но оправдано ли эта популярность сегодня? Проведём сравнение свойств кирпича со стеновыми блоками из арболита.

Арболит является материалом также с богатой историей. Широко использовался  еще во времена СССР, когда было построено более 100 заводов по его выпуску, а также  в 90-х. И по технологии перекликается с таким  известным из истории материалом как саман, но связывает вместе — дерево и бетон.

Теплоизоляция

У различных видов кирпичей теплопроводность в среднем составляет 0.5-1.5Вт/(м*К).

У арболита — 0.08-0.17Вт/(м*К).

Соответственно, стандартная стена из арболитовых блоков толщиной 30 см соответствует кирпичной толщиной 100-190см (в зависимости от качества кирпича) и оказывается достаточно тёплой для применения без специальных утеплителей даже в северных регионах России. Но не стоит забывать и про важный удар по теплосбережению в виде так называемых «мостиков холода», которые составляет кладочный раствор. И, если объём стандартного блока из арболита равен более чем 15 кирпичам — это значит, что в стене одинакового объема площадь «мостиков холода»  в 2 раза  меньше (а для стен одинаковой теплопроводности – в 6-13 раз). То есть, различие в фактическом теплосбережении кирпичного дома и дома из арболита — оказывается значительно сильнее, чем и без того огромная разница в теплопроводности самих материалов, а также затраты на раствор для кирпичной кладки значительно выше.

Плотность

У арболита с несущими свойствами до 3х этажей — 600кг/м3 (он относится к группе легких бетонов), размеры блока — 500х300х200мм (0.03 м3).

У кирпича с аналогичными конструкционными возможностями — 1500-2000кг/м3, стандартный размер — 250х120х65мм (объём 0.00195 м3).

Соответственно, вес кирпича как минимум в 2.5-3.5 раза больше, чем аналогичного объема арболита. А с учетом различий в тепловых свойствах — то требуемая масса кирпича для строительства дома аналогичного качества уже будет в 10-15 раз выше. То есть, даже одна только стоимость транспортировки материала уже делает кирпичный дом значительно дороже. Из-за такого серьёзнейшего различия проекты кирпичных домов предусматривают использование значительно более тяжелого, а значит — и более дорогого фундамента.

Строительные свойства

Арболит, в отличие от кирпича, обладает широким спектром возможностей  по обработке в процессе строительства и использования:

— Горючесть

Арболит относится к группе материалов, не поддерживающих горение, и способен долго противостоять высоким температурам.

Кирпич же стандартно относится к абсолютно негорючим материалам, но применение в реальной жизни практически уравнивает положение – с учетом количества деревянных перекрытий в стандартном кирпичном доме, при пожаре кладка подвергается воздействию температур достаточных как минимум для значительного снижения прочности строения, а то и для частичного разрушения материала, что уж точно создаёт серьёзные вопросы о целесообразности дальнейшего применения такого здания.

Кроме того, дома из кирпича со стенами двухметровой толщины всё же редкий случай, поэтому обязательно используются различные утеплители, что часто представляет серьёзные проблемы не только с точки зрения источника вредных веществ в повседневном применении

(например, фенол в минвате или стирол в пенопласте), но и с точки зрения их высокой горючести и\или выделения токсичного дыма при больших температурах.

— Биостойкость

Мощное цементное покрытие древесного наполнителя в арболите защищает его от гниения, поражения грибками и других факторов. Арболит и кирпич пропускают воздух, чем обеспечивают не только вентиляцию дома и оздоровление внутреннего микроклимата, а также и более дружелюбные условия для существования самого материала. Но поскольку в составе арболита превалирует дерево, а необходимая толщина стен для дома значительно ниже – это свойство можно считать в нём значительно более развитым, чем в кирпиче.

— Экологичность

До 80-90% арболитового блока составляет древесная щепа, остальное – просто высокосортный цемент с отвердителем. Как видим – технология не только полностью безопасна как для конечного потребителя, так и в процессе производства, но и позволяет решать проблему рационального использования отходов деревоперерабатывающих предприятий. Для производства кирпича используется глина или кварцевый песок (силикатный кирпич) с различными специальными добавками. Произведенный материал тоже экологически безопасен. Но у естественных природных материалов (глины и песка) существует недостаток: невозможно узнать, с какой именно территории взято сырьё. Что приводит к существованию немалого числа случаев появления в продаже радиоактивного кирпича.

Выводы

При использовании строительных блоков из арболита  получаем следующие преимущества перед использованием кирпичей:

— меньший вес и объем необходимых стройматериалов

— меньшие затраты на доставку и хранение материалов

— высокая экологичность и биостойкость

— высокая теплоизоляция при меньшем объеме материала

— высокая сейсмостойкость и прочность

— упрощение отделочных работ и обустройства интерьера

— уменьшение сложности и длительности строительных работ

— сокращение затрат на фундамент, ввиду меньшего веса здания

— сокращение затрат на оплату строительных работ и строительство

— долголетняя эксплуатация дома при различных температурах